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ABSTRACT 

As the NAVY moves forward with plans to become less dependent on fossil fuels and 

more dependent on hybrid electric drives and all-electric ships, being aware of the 

stability issues associated with direct current (DC)-DC and DC-alternating current (AC) 

power converters and understanding how to solve the issues that come with using them, 

are very important.  The negative input impedance that is observed when using a buck 

converter servicing a constant power load (CPL) is one of the issues that needs to be 

understood.  Understanding the stability issue caused by the negative input impedance 

and mitigating this instability by varying the input source impedance is the focus of this 

thesis. 

Using a Simulink model of an ideal CPL, we determined the expected results.  

Then, the Simulink results were compared to the analysis of the linearized small signal 

transfer function to determine how well the results of the two matched.    Finally, the 

hardware model was observed and its results compared to the Simulink model and 

linearized small signal transfer function. 

These experiments led to the conclusion that increasing the capacitance or 

decreasing the inductance reduces the input source impedance and, ultimately, reduces 

instability in the system. 
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EXECUTIVE SUMMARY 

As the NAVY moves forward with plans to become less dependent on fossil fuels 

and more dependent on hybrid electric drives and all-electric ships [1], being aware of the 

stability issues associated with direct current (DC)-DC and DC-alternating current (AC) 

power converters and understanding how to solve the issues that come with using them 

are very important.  The negative input impedance that is observed when using a buck 

converter servicing a constant power load (CPL) is one of the issues that needs to be 

understood.  Understanding the stability issue caused by the negative input impedance 

and mitigating this instability by varying the input source impedance is the focus of this 

thesis. 

The objective of this thesis was to observe the expected behavior of a buck 

converter acting as a CPL as the source impedance changed.  Much work has already 

been done in the area of controlling power converters acting as CPLs, but not much 

literature could be found on how the input impedance affects the converters when 

servicing a CPL. 

The first step of this thesis was to understand the idealized Simulink model of 

CPLs designed by Prof. Alexander Julian and the small signal voltage transfer function 

[2]. 

The goal was to use the Simulink model and small signal voltage transfer function 

to predict the behavior of the system’s stability and see how varying the values of the 

components makes a difference in stability.  The second step was to build a hardware 

model to see how a buck converter acting as a CPL really is affected when the input 

source impedance changes and to see how accurately the ideal Simulink model and 

linearized equation predicts the hardware results.  A simple circuit was built in the lab 

using the Power-one module model DFA6U12S5, which is a buck converter acting as a 

CPL. 

A buck converter is a step down converter:  it takes the input voltage and reduces 

the voltage so that the output voltage is lower than the input. A buck converter is a simple 



 xvi

circuit consisting of a source, two switches (usually a transistor and a diode), an inductor, 

a capacitor, and a load.  Power converters such as a buck converter are used because of 

their precise output voltage control capability [3], which enables them to respond almost 

immediately to system changes.  This advantage of the buck converter is a disadvantage 

when it acts as a CPL.  The Buck converter power converter has an input voltage range 

between 9 V and 27 V and outputs 5 V DC. 

Constant power loads create a destabilizing effect in the circuits to which they are 

connected because of negative impedance instability [1],[3]-[7].  This negative 

impedance comes from the way the input voltage and current respond when a load 

change occurs in a CPL.  When voltage decreases, current increases; and when voltage 

increases, current decreases.  This change in voltage or current is the destabilizing effect 

of a CPL. 

Using a Simulink model of an ideal CPL, we determined what the expected 

results should be.  Then, comparing the Simulink results to the analysis of the linearized 

small signal transfer function, we analyzed how well the results matched.   

A simple model was constructed in order to compare the simulation results with 

the experimental results.  A PROTO-BOARD PB-503 was used for the construction of 

the circuit, and the built-in power source was used as the source.  Two capacitors, two 

inductors, and two resistors were obtained from the lab, and the Power-one module was 

used as the buck converter. 

In this thesis the characteristic trait of tightly regulated power electronics, which 

allow them to act like CPLs and the stability issues concerning CPLs, were reviewed.  

The results observed show that the models accurately predicted the frequency of 

the disturbance on the bus feeding the CPL of the hardware experiment at the initial load.  

The amplitude was not accurately predicted at either load, but the trend was similar for 

the Simulink model, the linearized small signal transfer function and the hardware model.  

The frequency at the final load was also not accurately predicted, but again the same 

trend was seen in all methods of analyses.  The Buck converter’s control scheme is not 

known; this unknown factor may explain the inaccurate prediction at higher loads. 
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I. INTRODUCTION 

A. BACKGROUND 

Since the introduction of power electronics there have been new uses for direct 

current (DC)-DC converters in many fields of electronics.  People use power converters 

because of an important characteristic that tightly regulated power converters exhibit.  

This characteristic is an almost-perfect regulation at the output terminals that is 

independent of the changes made at the input terminals [1].  Because of this important 

characteristic, power electronics-based power supplies are finding their way into 

environments such as aircrafts, vehicles and ships [1].  The benefit of a constant output 

that does not depend on input changes does have associated problems.  A tightly 

regulated, almost perfect power converter has a characteristic at the input terminals that 

reflects a constant power load (CPL) [1].  CPLs have a negative impedance characteristic 

at the input terminals which can have an effect on the stability of the system [1], [2].  

As the NAVY moves forward with plans to become less dependent on fossil fuels 

and more dependent on hybrid electric drives and all-electric ships [3], being aware of the 

stability issues associated with DC-DC and DC-alternating current (AC) power 

converters, and understanding how to solve the issues that come with using them, are 

very important.  The negative input impedance that is observed when using a buck 

converter servicing a CPL is one of the issues that needs to be understood.  

Understanding the stability issue caused by the negative input impedance and mitigating 

this instability by varying the input source impedance is the focus of this thesis. 

B. OBJECTIVE 

The objective of this thesis was to observe the expected behavior of a buck 

converter acting as a CPL as the source impedance changed.  Much work has already 

been done in the area of controlling power converters acting as CPLs, but not much 

literature could be found regarding how the input impedance affects the converters when 

servicing a CPL.  After the expected behavior was observed through both simulation and 

hardware verification, the source impedance was changed.  The steady state output was 
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observed to see the effects as the impedance changed.  Comparisons between the 

Simulink model and the linearized equation of the ideal model were made to see how 

well they predicted the behavior. 

C. PREVIOUS WORK 

In [1] the control of a buck DC-DC converter was studied while operating with a 

CPL in sea and undersea vehicles.  The paper primarily focused on the large signal 

analysis of the converter loaded by a CPL and on the design of a feedback system.  The 

authors used a controller that was a combination of an instantaneous current feedback 

loop using hysteresis and a proportional-integral (PI) algorithm to regulate the output 

voltage of the converter. 

In [2] the authors looked at CPLs and negative impedance instability in 

automotive systems, specifically more electric vehicles (MEVs), hybrid electric vehicles 

(HEVs), electric vehicles (EVs), and fuel cell vehicles (FCVs).  The author’s focus was 

on the negative impedance instability concept of CPLs in advanced multiconverter 

automotive power systems. 

In [3] we see another article focusing on the controller, with the focus on using 

medium-voltage DC (MVDC) integrated power systems, whose use is a goal for future 

surface combatants and submarines.  The authors proposed a third order sliding-mode 

controller (SMC) for DC-DC buck converters with CPLs.  The problem here is that in 

MVDC shipboard power systems, the DC-DC converters are used to supply constant 

power to electrical loads, and these loads have a negative impedance characteristic. 

The last article was motivated by the Navy’s interest in developing a DC Zonal 

Electrical Distribution System (DC ZEDS).  The authors of [4] developed a DC-DC buck 

chopper nonlinear control law that guarantees local asymptotic stability for a range of 

admissible constant power. 

D. APPROACH 

The first step of this thesis was to understand the idealized Simulink model of 

CPLs and the small signal voltage transfer function [5].   



 3

The goal was to use the small signal voltage transfer function to predict the 

behavior of the system’s stability by solving the roots of the characteristic equation and to 

see how varying the values of the components affects stability.  The last step was to build 

a hardware model to see how a CPL serviced by a buck converter was affected when the 

input source impedance changed and to see how accurately the ideal Simulink model and 

linearized equation predicted the hardware results.  A simple circuit was built in the lab 

using the Power-one converter model DFA6U12S5 as a buck converter servicing a CPL. 

E. THESIS ORGANIZATION 

The theory of how a tightly regulated power converter, acts like a CPL at the 

input terminals, the stability issues with CPLs, and possible fixes for these stability issues 

are discussed in Chapter II.  The simulation of the ideal model, along with the hardware 

experiments and verifications, are discussed in Chapter III.  The results and analysis of 

the simulations and hardware experiments are presented in Chapter IV.  Conclusions are 

drawn based on the results from the simulations and hardware experiments in Chapter V.  

The validity of the Simulink model is reviewed.  Possibilities for future work in this topic 

are also presented. 
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II. CONSTANT POWER LOAD SERVICED BY A BUCK 
CONVERTER 

A buck converter is a step down converter:  it takes the input voltage and reduces 

the voltage so that the output is lower than the input. A buck converter is a simple circuit 

consisting of a source, two switches (usually a transistor and a diode), an inductor, a 

capacitor, and a load.  Figure 1 is an example of a simple buck converter circuit.  Power 

converters such as a buck converter are used because of their tight output voltage control 

capability [1], which enables them to respond almost immediately to system changes.  

This advantage of the buck converter is a disadvantage when it acts as a CPL.  In this 

thesis the Power-one power converter was used during lab experiments.  The Power-one 

has an input voltage range between 9 V and 27 V and outputs 5 V DC.  A buck converter 

regulates the output capacitor voltage (voltage across C in Figure 1) by controlling the 

duty cycle of the transistor shown in Figure 1.  This is accomplished by closing a control 

loop from the output voltage to the transistor base.  Typically the output voltage is held 

constant independent of the input voltage.  This causes the power consumed by Rload to be 

constant, and therefore, the buck converter looks like a CPL. 

 

Figure 1.   Buck converter diagram. 

A. CONSTANT POWER LOAD 

In a CPL, the load maintains a constant power level by drawing more or less 

current as required by the situation.  For example, if the input voltage decreases, the input 

current increases; or if the input voltage increases, the input current decreases in order to 

maintain a constant power level.  This trait of a CPL is a “destabilizing effect known as 

negative impedance instability” [2]. 
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B. HOW A BUCK CONVERTER ACTS LIKE A CONSTANT POWER LOAD 

A buck converter acts as a CPL at the input terminals because of the way the load 

appears across the output terminals.  A couple of basic equations are necessary to 

mathematically explain the way the load appears.  From Ohm’s Law, V IR  where V is 

voltage, I is current and R is resistance.  Power P is given by P = IV and measured in 

Watts (W).  Substituting Ohm’s Law into the power equation, we get  

 
2V

P
R

  (1) 

which was used to measure the load.  Because of the tight output voltage regulation of the 

power converter, the output voltage is held constant at 5 V DC.  When the load 2V R  

increases because R decreases, the power converter requires more input current in order 

to maintain the constant output voltage.  A load is generally thought of as a resistance, 

and when resistors are added in parallel, the total resistance decreases because of: 

 
1 2

1 1 1 1

T nR R R R
       (2) 

where nR is the nth resistor. 

Because the voltage output of the buck converter is not going to change–in other 

words, it maintains a constant 5 V DC at the output terminals–the only way to change the 

load or power level in equation (1) is to change the resistor value.  As the load changes, 

the power level changes, and the stability at the input terminal of the buck converter is 

affected.  Again, a CPL is a characteristic that is created when using power electronics, 

and the almost perfect regulation [1] of the power electronics is the cause for the negative 

instability effect.  Figure 2 is an example of a buck converter.  Closing a control loop on 

Ov  makes the buck converter act like a CPL. 
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Figure 2.   A buck converter with a constant-power load (From [3]). 

C. STABILITY ISSUES WITH CPLS AND POSSIBLE SOLUTIONS 

Constant power loads create a destabilizing effect in the circuits they are 

connected to because of negative impedance instability [1]–[4], [6], [7].  This negative 

impedance comes from the way the input voltage and current respond when a load 

change occurs in a CPL.  When voltage decreases and current increases, or vice versa, 

this change in voltage or current is the destabilizing effect of a CPL. 

One possible fix is to not control them as tightly; doing so, however, can cause 

other issues because the control is tightly regulated so that a constant voltage or current is 

maintained at some point of interest.  Another fix is to put a decoupling or calming 

capacitor in parallel with the source before the power converter.  We show in the results 

section how our original simulation and hardware experiment acted with our initial 

capacitor value and then show how it was affected when we increased the capacitance.  

The result is that the steady state input voltage to the buck converter had a smaller ripple 

because it was more stable with a larger capacitance.  The increase in capacitance also 

decreased the turn-on transient and the ripple seen after the load change.  Reducing the 

source inductance is another helpful remedy.  When decreasing the source inductance, the 

circuit reacted similarly to the way it does when the capacitance is increased.  When 

decreasing the inductance or increasing the capacitance, the source impedance is 

ultimately lowered.  The lowering of the source impedance has a positive effect on the 

circuit from the standpoint of stability. 
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Placing a coupling capacitor or filter capacitor ( fC ) in parallel with the source 

and the power converter is important because the capacitor makes a significant 

difference.  The larger capacitance in my simulations and experiment made a significant 

difference in decreasing the ripple as mentioned above.  The decreased ripple is important 

because a marginally stable device does not break down a device such as a 

microprocessor immediately, and a 1-volt ripple voltage has more negative long-term 

effects on the equipment’s life expectancy than a smaller ripple voltage.  

When a smaller inductor was placed in the circuit, or when the inductor was 

eliminated (as by shorting the one in the circuit), the ripple voltage was significantly 

reduced.  It is also important to realize that the distance between the CPL and the 

inductor and capacitor has a distinct effect on the circuit because impedance in cables or 

electric lines builds over distance.  In short, the inductor and capacitor need to be as close 

to the CPL as possible. 

In this chapter, a particular power electronics device called a buck converter was 

introduced and how it acts like a constant power load was discussed.  The stability issues 

with CPLs were reviewed, and a few ideas were mentioned on how to help make a circuit 

with a CPL more stable.  The methods used to analyze the system in simulation, 

analytically and in a hardware example are discussed in the next chapter.  
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III. SIMULATION AND HARDWARE MODEL. 

Using a Simulink model of an ideal CPL, we determined the expected results.  

Then, comparing the Simulink results to the results of the analysis of the linearized small 

signal transfer function, we analyzed how well the results matched.  Finally, observing 

the hardware model and comparing its results to the Simulink model and linearized small 

signal transfer function, we see that the Simulink model predicts the behavior of a CPL.  

The Simulink model predicted the frequency of the system, but it did not match the 

amplitude seen in the hardware experiment.  This difference between the simulation and 

hardware experiment is likely due to the unknown control mechanism that the buck 

converter uses to maintain a constant voltage.  This model is useful because it provides a 

better understanding of how the input impedance affects the stability of a CPL.   

A. IDEAL CONSTANT POWER LOAD 

An ideal Simulink Model of a CPL, shown in Figure 3 [6], was studied in order to 

understood how a CPL functions.  The Simulink model shown in Figure 4 was developed 

using the circuit in Figure 3. 

 

Figure 3.   Circuit example with a CPL (From [5]). 
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Figure 4.   Block diagram of Simulink model for ideal constant power load (From [5]) 

The Simulink model in Figure 4 is an idealized CPL developed from the circuit in 

Figure 3.  The Simulink model demonstrated the unwanted consequences of a CPL.  The 

simulation showed that, after a load change, the voltage decreased and the current 

increased just as one would expect a CPL to act.  Only the voltage response was 

considered in this thesis; however, as voltage decreases, current increases, and vice versa. 

B. USING THE LINEARIZED EQUATION WITH MATLAB TO PREDICT 
STABILITY 

One way to better understand how a CPL behaves is by stepping through the 

derivation of the small signal voltage transfer function and developing the linearized 

model of the idealized CPL which allows for analysis of the characteristic equation.  

Using Figure 3, Kirchhoff’s Voltage Law (KVL) and the Taylor series expansion in order 

to linearize the nonlinear equation, we obtain the Laplace domain equations which lead to 

the small signal voltage transfer function where SV  is the source voltage, s  is the Laplace 

operator, SL  is the source inductance, SR  is the source resistance, SI  is the source 

current and OV  is output voltage: 

  S S S S OV sL R I V    (3) 

and  
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 O
S f O

O

P
I sC V

V
   (4) 

where OP  is the output power.  Substituting (4) into (3), we get  

   O
S S S f O O

O

P
V sL R sC V V

V

 
    

 
. (5) 

Simplifying, we get  

 2 S O S O
S S f O S f O O

O O

L P R P
V s L C V sR C V s V

V V
      (6) 

after which we derive the Taylor series expansion [8] and approximate the linear equation 

as 

 2
2 2

S O S O
s SO S f O S f O O O O

OO OO

L P R P
V V s L C V sR C V s V V V

V V
            (7) 

where SOV  is the nominal source voltage, OV  is the small signal variation in output 

voltage and OOV  is the nominal DC output voltage value of OV .  In order to achieve a 

transfer function, which is a ratio of output to input, we manipulate the terms of the 

Taylor series expansion in (7) to get 

 2
2 2

S O S O
S SO S S f O S f O O O O

OO OO

sL P R P
V V V s L C V sR C V V V V

V V
              (8) 

where SV  is the small signal variation in source voltage.  Simplifying (8), we get 

 
2

2 2

1

1

O

S S O S O
S f S f

OO OO

V

V L P R P
s L C s R C

V V




    
      

   

 (9) 

By examining the roots of (9), we can determine the requirements for stability, 

which can be seen from the requirements that  

 
2

0S O
S f

OO

L P
R C

V
   (10) 

and  

 
2

1 0S O

OO

R P

V
   (11) 
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for stable operation [6].  When solving (10) for SL  and (11) for SR , we can better 

understand what measures need to be taken to ensure stability.  To ensure stable 

operation, the coefficients of the characteristic equation must be positive; this ensures 

that the poles end up in the left-half plane.  Rearranging (10) and (11), we get, 

respectively, 

 
2

2 2
0S O S O OO

S f S f S S f
OO OO O

L P L P V
R C R C L R C

V V P
       (12) 

and 

 
2

2 2
1 0 1S O S O OO

S
OO OO O

R P R P V
R

V V P
      . (13) 

In order to maintain stability in an ideal CPL, one must carefully choose the 

source resistance and the source inductance.  Looking back at equation (9) allows one to 

identify the components that, when varied, affect system stability. 

By solving the roots of the characteristic equation, we were able to predict the 

stability of the system when using specific components.  The three coefficients of the 

second order polynomial that is the characteristic equation of the system are represented 

by 

 _ 2 2
1S S

i vec S f S f

L Poi R Poi
H L C R C

Voo Voo

              
 (14) 

for the initial load or power level (Poi) and  

 _ 2 2
1S S

f vec S f S f

L Pof R Pof
H L C R C

Voo Voo

              
 (15) 

for the final load or power level (Pof) which is higher than the initial power level.  

Equations (14) and (15) were evaluated in Matlab. 

1. Frequency Domain Plots 

When SL  or fC  are varied in equations (14) and (15), the solutions to the characteristic 

equation, the poles, move as shown in Figures 5, 6 and 7.  These values are better known 

as the roots or eigenvalues of the system. 
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Figure 5.   Root locus plot holding fC  constant and varying SL  at the initial power 

level. 

 

Figure 6.   Root locus plot holding SL  constant and varying fC  at the initial power 

level. 
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Figure 7.   Root locus plot for varying load/ power level with initial fC  and SL . 

As the inductance SL  decreases and all other components remain the same, the 

system becomes more stable as shown in Figure 5.  As the capacitance is increased and 

all other components remain the same, the system becomes more stable as shown in 

Figure 6.  As the power level is increased and all other components remain the same, the 

system becomes more unstable as shown in Figure 7.  Figures 6 and 7 are consistent with 

the findings of the Simulink model of the CPL and the hardware experiment which are 

compared in the results section.  The simulation predicted the frequency and gain which 

can be compared to the lab measurements.  The frequency can be compared between the 

nonlinear simulation, the linearized transfer function and the measured data. The 

amplitude of the input disturbance in the nonlinear simulation and in the lab 

measurements is unknown. Due to the unknown input disturbance, the gain from the 

transfer function cannot be compared to the disturbance output from the nonlinear 

simulation and the measured data because we do not know the amplitude of the input (or 

source) noise of the circuit. 
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C. HARDWARE MODEL 

A simple model was constructed in order to compare the simulation results with 

the laboratory experimental results.  A PROTO-BOARD PB-503 was used for the 

construction of the circuit, and the built-in power supply was used as the source SV .  Two 

capacitors, two inductors, and two resistors were used, and the Power-one was used as 

the buck converter. 

The Power-one is a power electronics converter.  The specific model used was a 

DC-DC step-down converter.  Because of trade secrets or intellectual property, the 

specific components or control methods that are being used are unknown.  The Power-

one application document does show a high level block diagram that includes a 

transformer and a buck converter with what looks to be a closed loop control of current 

which is probably designed to tightly regulate the output voltage. 

The circuit that was used to build the hardware experiment is shown in Figure 8.  

The values and specifics of the components used are shown in Table 1.  The switch is 

how the load was changed from the initial to the final.  When the switch was closed, 1R  

and 2R  were in parallel so the resistance decreases.  From equation (1), as the resistance 

decreases, the power increases.  Therefore, as R decreases the load, or power level, 

increases. 

 

Figure 8.   Diagram of hardware experiment.  All measurements were taken from 
nodes AB, channel two on oscilliscope screenshots 
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Table 1.   Values used in hardware experiment 

 Original Values (Measured) 
Values to see effects on Stability 

(Measured) 
Calming/filter Capacitor 

( fC ) 

EPCOS 12 F K 630V-MKP 

11.8 F  
First value 16.63 F  
Final value 100 F  

Inductor ( SL ) 
1130-471-RC 

467 H  
203 H  

(Two 1130-471-RC in ||) 
Power level (Resistor value) 
R1: YAGEO-DGK 10W 10  J 
R2: YAGEO-DGK 10W 4.7  J 

R1: 10.02   R1 || R2 : 4.65   

Noise reduction Capacitor 
(C) 

EPCOS 20 F K 450V-MKP 
19.5 F  19.5 F  

 

A picture of my laboratory experiment is shown in Figure 9.  The inductor was 

connected to the PROTO-BOARD and one of the capacitors was placed in series with it.  

Then the positive input terminal of the buck converter was connected to the positive lead 

of the capacitor.  The negative terminals of both the buck converter and capacitor were 

connected to ground which put the buck converter in parallel with the capacitor.  This 

step is necessary in order to allow the capacitor to act as a filter capacitor to help make 

the system more stable.  The resistors are in parallel and are connected to the output 

terminal of the buck converter as stated above and as shown in Figure 8. Again, the 

switch is what allowed for the load change.  The final capacitor (C) was to help reduce 

system noise as suggested by the buck converter application notes and does not affect 

stability. 
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Figure 9.   Picture of hardware experiment 

The different methods used to examine the stability of a circuit with a CPL were 

discussed in this chapter.  The simulation method, which in this thesis was Matlab’s 

Simulink program, was introduced first.  Then the linearized equation of the idealized 

CPL model was developed, and the stability requirements from the linearized equations 

were introduced.  The last thing discussed in this chapter was the hardware model that is 

used to verify the two previous methods for predicting stability.  The results from all 

three methods of analysis are discussed in the next chapter. 
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IV. RESULTS 

Changing the input source impedance affected whether the system became more 

or less stable.  Ways in which the Simulink model, the linearized equation of the ideal 

nonlinear model, and the hardware experiment show similar characteristics, and ways in 

which the frequency of the disturbance on the bus feeding the CPL at the initial power 

level are similar are discussed in this chapter.  The frequency of the disturbance is not 

predicted as well at the higher power level, which might be due to the internal 

components of the Power-one module and the control measures it uses to maintain a 

constant voltage.  We did not know what the control measures were and cannot better 

determine the exact cause. 

A. INITIAL LOAD COMPARISON WITH CHANGING SL  

The behavior at the initial power level (Poi) and decreasing the value of SL  are 

analyzed in this section.  For ease of review, the results from the different methods of 

analysis are shown in Tables 2 and 3. 

Table 2.   SL  = 467 H at initial load 

 Simulink Plot Transfer function 
analysis 

Hardware 
verification 

Frequency 2000 Hz 2037.2 Hz 1950 Hz 
Amplitude 
(Gain dB) 

21.16 V 10.2 dB 13.1 V 

Table 3.   SL  = 203 H at initial load. 

 Simulink Plot Transfer function 
analysis/Bode 

Hardware 
verification 

Frequency 3333 Hz 2881 Hz 2980 Hz 
Amplitude 
(Gain dB) 

9.52 V 5.35 dB 11.9 V 

It can be seen from Tables 2 and 3 that, as inductance was decreased, the system 

becomes more stable.  The frequency increases and the amplitude or gain decreases.  
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From either Table 2 or Table 3 it can be seen that all three methods of analyses predicted 

approximately the same frequency. 

Figure 10 and Figure 11 are the plots from the Simulink model of the ideal CPL.  

When comparing Figure 10 to Figure 11, we can see that the amplitude is decreasing and 

the frequency of the disturbance on the bus feeding the CPL is increasing.  The following 

plots represent the data that was taken to make Tables 2 and 3. 

 

Figure 10.   Capacitor Voltage for constant power load with SL  = 467 H at Poi. 

 

Figure 11.   Capacitor Voltage for constant power load with SL  = 203 H at Poi. 
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In Figure 12, as the inductance decreases and the poles move further into the left-

half plane, the system becomes more stable.  These results are consistent with the 

information in Tables 2 and 3.  In Figures 13 and 14, the frequency is given in radians per 

second, and in Tables 2 and 3 the frequency is given in Hz; the conversion is made by 

dividing the Bode plot freqency by 2 .  The gain in Figures 13 and 14 also decreases 

which indicates that the system is becoming more stable and is consistant with Tables 2 

and 3. 

 

Figure 12.   Stability plot at Poi holding fC  constant and varying SL  
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Figure 13.   Bode plot for SL  = 467 H at Poi. 

 

Figure 14.   Bode plot for SL  = 203 H at Poi. 
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Figures 15 and 16 are oscilloscope screenshots from the hardware experiment 

showing the input voltage to the CPL.  When comparing Figure 15 to Figure 16, we can 

see that the frequency increases and the amplitude decreases, as shown in Tables 2 and 3. 

 

 

Figure 15.   Oscilloscope screen capture of CPL input voltage (ch2) and source voltage 
(ch1) with SL  = 467 H at Poi.  Amplitude = 13.1 V and frequency = 1950 

Hz measured with cursors. 

 

Figure 16.   Oscilloscope screen capture of CPL input voltage (ch2) and source voltage 
(ch1) with SL  = 203 H at Poi.  Amplitude = 11.9 V and frequency = 2980 

Hz measured with cursors. 
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B. FINAL LOAD COMPARISON WITH CHANGING SL  

The behavior at a higher power level (Pof) compared to the previous section while 

decreasing the value of SL  is analyzed in this section.  For ease of review, the results 

from the different methods of analysis are shown in Tables 4 and 5. 

Table 4.   SL  = 467 H at final load. 

 Simulink Plot Transfer function 
analysis/Bode 

Hardware 
verification 

Frequency 2000 Hz 1973.5 Hz 2080 Hz 
Amplitude 
(Gain dB) 

13.11 V 22.1 dB 14.2 V 

 

Table 5.   SL  = 203 H at final load. 

 Simulink Plot Transfer function 
analysis/Bode 

Hardware 
verification 

Frequency 2500 Hz 2833 Hz 3050 Hz 
Amplitude 
(Gain dB) 

5.76 V 8.38 dB 13.9 V 

It can be seen from Tables 4 and 5 that again, as the inductance decreases, the 

system becomes more stable even when operating at a higher power level.  All three 

methods of analyses again predict similar trends.  Frequency is not as well predicted as in 

the initial load, possibly because of the unknown control methods of the buck converter 

and how it reacts at higher power level demands. 

Figure 17 and Figure 18 are the plots from the Simulink model of the ideal CPL.  

When comparing Figure 17 to Figure 18, we can see that the amplitude is decreasing and 

the frequency increasing.  The following plots represent the data taken to make Tables 4 

and 5. 
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Figure 17.   Capacitor Voltage for constant power load with SL  = 467 H at Pof. 

 

Figure 18.   Capacitor Voltage for constant power load with SL  = 203 H at Pof. 
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Figure 19.   Stability plot at Pof holding Cf constant and varying SL  

In Figure 19, as the inductance decreases and the poles move further into the left-

half plane, the system becomes more stable.  These results are consistent with the 

information in Tables 4 and 5.  The gain in Figures 20 and 21 also decreases, which 

indicates that the system is becoming more stable and is consistant with Tables 4 and 5. 

 

Figure 20.   Bode plot with SL  = 467 H at the final load 
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Figure 21.   Bode plot for SL  = 203 H at the final load 

Figures 22 and 23 are oscilloscope screenshots from the hardware experiment.  

When comparing Figure 22 to Figure 23, we can see that the frequency increases and the 

amplitude decreases, as shown in Tables 4 and 5. 

 

Figure 22.   Oscilloscope screen capture of CPL input voltage (ch2) and source voltage 
(ch1) with SL  = 467 H at Pof.  Amplitude = 14.2V and frequency =2080 

Hz measured with cursors 
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Figure 23.   Oscilloscope screen capture of CPL input voltage (ch2) and source voltage 
(ch1) with SL  = 203 H at Pof.  Amplitude = 13.9 V and frequency = 3050 

Hz measured with cursors 

C. INITIAL LOAD COMPARISON WITH CHANGING fC . 

The behavior at the initial power level while increasing the value of fC  is 

analyzed in this section.  For ease of review, the results from the different methods of 

analysis are shown in Tables 6 and 7. 

Table 6.   fC = 11.8 F at initial load. 

 Simulink Plot Transfer function 
analysis 

Hardware 
verification 

Frequency 2000 Hz 2037.2 Hz 1950 Hz 
Amplitude 
(Gain dB) 

21.16 V 10.2 dB 13.0 V 
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Table 7.   fC = 16.63 F at initial load 

 Simulink Plot Transfer function 
analysis/Bode 

Hardware 
verification 

Frequency 1666 Hz 1687 Hz 1710 Hz 
Amplitude 
(Gain dB) 

20.36 V 7.99 dB 12.2 V 

It can be seen from Tables 6 and 7 that, as the capacitance increases, the system 

becomes more stable.  All three methods of analyses predict approximately the same 

frequency at the initial load. 

Figure 24 and Figure 25 are the plots from the Simulink model of the ideal CPL.  

When comparing Figure 24 to Figure 25, we can see that the amplitude and frequency are 

decreasing.  The following plots represent the data that was taken to make Tables 6 and 7. 

 

Figure 24.   Capacitor voltage for constant power load with fC  = 11.8 F  
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Figure 25.   Capacitor voltage for constant power load with fC  = 16.63 F. 

In Figure 26, as the capacitance increases and the poles move further into the left-

half plane, the system becomes more stable.  These results are consistent with the 

information in Tables 6 and 7.  The gain in Figures 27 and 28 is also decreasing, which 

indicates that the system is becoming more stable, consistant with Tables 6 and 7. 

 

 

Figure 26.   Stability plot holding SL  constant and varying fC  at the initial load. 
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Figure 27.   Bode plot with fC = 11.8 F at the initial load. 

 

Figure 28.   Bode plot with fC = 16.63 F at the initial load. 
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Figures 29 and 30 are oscilloscope screenshots from the hardware experiment.  

When comparing Figure 29 to Figure 30, we can see that the amplitude and frequency are 

decreasing, as shown in Tables 4 and 5 when the capacitance was increased. 

 

Figure 29.   Oscilloscope screen capture of CPL input voltage (ch2) and source voltage 
(ch1) with fC = 11.8 F Poi.  Amplitude = 13V and frequency =1950 Hz 

measured with cursors. 

 

Figure 30.   Oscilloscope screen capture of CPL input voltage (ch2) and source voltage 
(ch1) with fC = 16.63 F at Poi.  Amplitude = 12.2V and frequency = 1710 

Hz measured with cursors. 
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D. FINAL LOAD COMPARISON VARYING fC  

The behavior at a higher power level compared to the previous section while 

increasing the value of fC  is analyzed in this section.  For ease of review, the results 

from the different methods of analysis are shown in Tables 8 and 9. 

Table 8.   fC = 11.8 F at final load 

 Simulink Plot Transfer function 
analysis/Bode 

Hardware 
verification 

Frequency 2000 Hz 1973.5 Hz 2160 Hz 
Amplitude 
(Gain dB) 

13.11 V 22.1 dB 14.0 V 

 

Table 9.   fC = 16.63 F at final load. 

 Simulink Plot Transfer function 
analysis/Bode 

Hardware 
verification 

Frequency 2000 Hz 1639 Hz 1790 Hz 
Amplitude 
(Gain dB) 

13.01 V 13.9 dB 13.0 V 

 

It can be seen from Tables 8 and 9 that, as the capacitance increases, the system 

becomes more stable.  All three methods of analyses again predict similar trends.  

Frequency is not as well predicted as for the initial load, which could be due to the 

unknown control methods of the buck converter and how it reacts at higher power levels. 

Figure 31 and Figure 32 are the plots from the Simulink model of the ideal CPL.  

When comparing Figure 31 to Figure 32, we can see that the amplitude and frequency are 

decreasing.  The following plots represent the data that was taken to make Tables 8 and 9. 
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Figure 31.   Capacitor voltage for constant power load with fC  = 11.8 F. 

 

Figure 32.   Capacitor voltage for constant power load with fC  = 16.63 F. 
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In Figure 33, as the capacitance increases and the poles move further into the left-

half plane, the system becomes more stable.  These results are consistent with the 

information in Tables 8 and 9.  The gain in Figures 34 and 35 is also decreasing, which 

indicates that the system is becoming more stable, consistant with Tables 8 and 9. 

 

 

Figure 33.   Stability plot holding SL  constant and varying fC  at the final load. 

 

Figure 34.   Bode plot with fC  = 11.8 F at the final load. 
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Figure 35.   Bode plot with fC  = 16.63 F at the final load. 

Figures 36 and 37 are oscilloscope screenshots from the hardware experiment.  

When comparing Figure 36 to Figure 37, we can see that the amplitude and frequency are 

decreasing, as shown in Tables 8 and 9 as the capacitance increased. 

 

Figure 36.   Oscilloscope screen capture of CPL input voltage (ch2) and source voltage 
(ch1) with fC = 11.8 F at final load. Amplitude = 14.0 V and frequency = 

2160 Hz measured with cursors. 
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Figure 37.   Oscilloscope screen capture of CPL input voltage (ch2) and source voltage 
(ch1) with fC = 16.63 F at final load.  Amplitude = 13.0 V and frequency 

= 1790 Hz measured with cursors. 

 

E. ROOT LOCUS ANALYSES FOR VARYING LOAD RESISTANCE. 

Figures 38–41 are root locus plots when varying the load resistance or power 

level.  In Figure 38, the roots with the original component values at the initial and final 

power levels as a starting point are shown.  In Figure 39, a root locus plot with SL  

decreased at the initial and final power levels is shown.  In Figure 40, a root locus plot 

with fC  increased at the initial and final power levels is shown.  In Figure 41, a root 

locus plot when fC  was increased and SL  was decreased at the initial and final power 

levels is shown.  From these plots we conclude that the load of the system affected the 

stability of the system independent of the source impedance, and that changing the source 

impedance helped stabilize the system. 
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Figure 38.   Stability plot with SL  = 467 H  and fC = 11.8 F. 

As the load or power level increases, the system becomes less stable as the poles 

move closer to the right-half plane as shown in Figure 38.   

 

Figure 39.   Stability plot with SL  = 203 H and fC = 11.8 F . 
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Figure 40.   Stability plot with SL  = 467 H and fC = 16.63 F . 

 

Figure 41.   Stability plot with SL = 203 H and fC  = 16.63 F . 
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The effects of changing SL  and fC  were discussed in this chapter. When SL  and 

fC  are changed in the appropriate ways to improve stability the roots moved further 

away from the right-half plane as shown in Figures 39, 40 and 41.  The figures from the 

previous sections validated the root locus’ prediction of stability as the load changed and 

as the inductance and capacitance changed.  When increasing the capacitance and 

decreasing the inductance at the same time as shown in Figure 41, the poles of the system 

moved further into the left-half plane than when only changing SL or fC independently as 

shown in Figures 39 and 40.  The overall findings of how changing the source impedance 

affected the systems stability is discussed in the next chapter.  A few recommendations 

are also made on how this thesis’ work could be improved to allow for better stability 

prediction. 
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. ACCOMPLISHMENTS 

The characteristic trait of tightly regulated power electronics which act like CPLs 

and the stability issues concerning CPLs were reviewed in this thesis.  A Simulink model 

of an ideal CPL was used, along with a linearized model of the nonlinear ideal Simulink 

model, to predict the stability of the system as the input source impedance varied.  A 

hardware experiment was built in the lab using a commercial off-the-shelf DC –DC 

converter to act as a CPL.  This model was a simple, hands-on model of the Simulink 

model, used to verify the predictions of both the ideal model and the linearized model. 

The results observed showed that the models accurately predicted the frequency 

of the hardware experiment at the initial load.  The amplitude was not accurately 

predicted at either load, but the trend was similar for all three methods of analyses.  The 

frequency at the final load was also not accurately predicted, but again the same trend 

was seen in all methods of analyses.  The buck converter’s control scheme is not known; 

this unknown factor may explain the inaccurate prediction at higher loads.   

B. FUTURE WORK 

An ideal Simulink model was used.  The model is not as accurate as real-world 

systems; however, systems are designed to be as close to ideal as possible.  The Simulink 

model used a slew rate limiter to control the rate of change of the commanded current.  

The linearized equation which was used to find the roots of the characteristic equation 

and plot the findings did not incorporate the slew rate limiter.  A change that would allow 

a more accurate representation would be to replace the slew rate limiter in the Simulink 

model with a low pass filter, which can be modeled as a transfer function and added into 

the linearized equation. 

Another opportunity for further work would be to replace the Power-one module 

and its unknown control scheme with a DC-DC converter for which the control scheme is 

known.  Knowing the control scheme of the DC-DC converter, the researcher would have 

the ability to more accurately validate the models. 
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It was noted that the amplitude of the input disturbance for steady state operation 

is not known for the nonlinear simulation and the lab measurements.  Future work could 

look at the step response to try to estimate the eigenvalues from the nonlinear simulations 

and lab measurements. 
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APPENDIX  MATLAB CODE 

This Appendix contains the Matlab code used to analyze the data received from 

the Simulink model.  The Matlab code used to analyze the linearized equation of the ideal 

constant power of the circuit in Figure 3.  It also contains the Matlab code used to 

generate all the plots found in this thesis. 

%Stability_ic.m 
%LT George Roth Sep 2012 
Rs=.18; % for Ls = 467e-6 
Ls=467e-6; 
%Ls=203e-6; %increased value to show effect on stability 
Cf=11.8e-6; 
%Cf = 16.63e-6; %increased to show effect on stability  
Vdc=12; 
 
%Stability_plot.m 
  
time=simout(:,3); 
current=simout(:,1); 
voltage=simout(:,2); 
figure(8); 
%plot(time,current,'b','linewidth',2) 
%hold on; 
plot(time,voltage,'r','linewidth',2) 
hold off; 
xlabel('Time(s)','FontName','FixedWidth') 
ylabel('Volts(V)','FontName','FixedWidth') 
axis([.248 .254 0 25]); 
grid; 
legend('Voltage','Location','SouthEast'); 
title('Capacitor Voltage for constant power load'); 
%title('Capacitor Voltage and Source current for constant current 
load'); 
 
%Analysis.m 
clear,clc 
close all 
Ls = 467e-6; % original value 
%Ls = 203e-6; % decreased value to show affect on stability 
Rs = .18*15; % Multiply by 15 to take into account for unknown 
resistance in protoboard. 
%Cf = 11.8e-6; % original value from lab. 
Cf = 16.63e-6; % Increased Capacitor value from lab to show affects on 
Stability. 
V = 5; %Voltage 
R1 = 10.02; %Resistor one 
R2 = 4.65; %Resistor two 
Ri = R1; % Initial Resistance 
Rf = R1*R2/(R1+R2); %Final Resistance 
Poi = V^2/Ri; %Initial Power 
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Pof = V^2/Rf; %Final Power 
Voo = 12; %Nominal output voltage 
  
%%%%%   Finding roots of characteristic equation 
Hi_vec=[Ls*Cf (Rs*Cf-(Ls*Poi)/Voo^2) (1-(Rs*Poi)/Voo^2)] 
Hi = tf([1],Hi_vec) 
Hf_vec=[Ls*Cf (Rs*Cf-(Ls*Pof)/Voo^2) (1-(Rs*Pof)/Voo^2)] 
  
Hf = tf([1],Hf_vec) 
  
char_roots_i = roots(Hi_vec) 
char_roots_f = roots(Hf_vec) 
  
% complex number = a +jomega and omega = 2*pi*f so: 
% r1 = 13439.09671; 
% r2 = 13235.3212; 
% f_i = r1/(2*pi) 
% f_f = r2/(2*pi) 
  
  
%%%%    Plotting roots of characteristic equation for different values 
of 
%%%%    Cf and Ls 
Cfv = Cf/7:Cf/10:Cf*8000; % 
Cfv = Cfv'; 
I = ones(length(Cfv),1); 
Lc = [Ls*Cfv  (Rs*Cfv-(Ls*Poi)/Voo^2)  I*(1-(Rs*Poi)/Voo^2)]; 
  
%loop for the roots when varying Cf and holding Ls constant 
L_rootsc = zeros(2,length(Lc)); %initialze place to store 
for a=1:length(Lc) % how many times to run loop, length of L 
    L_rootsc(:,a) = roots(Lc(a,:)); % Takes "a" row all columns of L 
and puts result in all rows of "a" column. 
end; 
xx = 0; 
yy = [-1.5e4:200:1.5e4]; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(1) 
plot(real(L_rootsc(1,:)),imag(L_rootsc(1,:)),'r'); 
hold on; plot(real(L_rootsc(2,:)),imag(L_rootsc(2,:)),'b'); 
plot(real(L_rootsc(1,9)),imag(L_rootsc(1,9)),'kO'); 
plot(real(L_rootsc(1,13)),imag(L_rootsc(1,13)),'rd'); 
plot(real(L_rootsc(1,84)),imag(L_rootsc(1,84)),'kd'); 
plot(xx,yy,'k'); 
legend('1^s^t pole locus','2^n^d pole locus','Lab Value (11.8e-
6f)','Increased Cap(16.63e-6f)','Increased Cap(100e-
6f)','Location','Best'); 
plot(real(L_rootsc(2,9)),imag(L_rootsc(2,9)),'kO'); 
plot(real(L_rootsc(2,84)),imag(L_rootsc(2,84)),'kd'); 
plot(real(L_rootsc(2,13)),imag(L_rootsc(2,13)),'rd'); 
hold off; 
axis([-4000 1000 -30000 30000]); 
title('Stability plot holding Ls constant and varying Cf') 
xlabel('Real') 
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ylabel('Imaginary') 
  
% loop for  the roots when varying Ls and holding Cf constant 
Lsv = Ls/5:Ls/30:Ls*2000; % 
Lsv = Lsv'; 
I = ones(length(Lsv),1); 
L = [Lsv*Cf  (Rs*Cf-(Lsv*Poi)/Voo^2)  I*(1-(Rs*Poi)/Voo^2)]; 
  
Ls_roots = zeros(2,length(L)); %initialze place to store 
for a=1:length(L) % how many times to run loop, length of L 
    Ls_roots(:,a) = roots(L(a,:)); % right side of equation=Takes "a" 
row all columns of L and puts (left side of equation) result in all 
rows of "a" column. 
end; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
figure(2) 
plot(real(Ls_roots(1,:)),imag(Ls_roots(1,:)),'r'); 
hold on; plot(real(Ls_roots(2,:)),imag(Ls_roots(2,:)),'b'); 
plot(real(Ls_roots(1,64)),imag(Ls_roots(1,64)),'kO'); 
plot(real(Ls_roots(1,9)),imag(Ls_roots(1,9)),'kd'); 
plot(xx,yy,'k-') 
legend('1^s^t pole locus','2^n^d pole locus','Lab Value (467e-
6H)','Decreased Lab Value of Ind (229e-6H)','Location','Best'); 
plot(real(Ls_roots(2,64)),imag(Ls_roots(2,64)),'kO'); 
plot(real(Ls_roots(2,9)),imag(Ls_roots(2,9)),'kd'); 
hold off; 
%axis([-300 1500 -31000 31000]); 
title('Stability plot at Poi holding Cf constant and varying Ls') 
xlabel('Real') 
ylabel('Imaginary') 
  
% Plotting amplitude gain 
figure(3) 
bode(Hi) 
title('Bode plot of small signal transfer function with initial load ') 
axis([10e1 10e4 -180 10]) 
  
bode_freq_in_kHz_for_Hi =  1.28e4/(2*pi) % Get the numerator from the 
bode plot and enter to let matlab convert, have to change everytime 
% any values of initial variables are changed. 
  
figure(4) 
bode(Hf) 
title('Bode plot of small signal transfer function with final load') 
axis([10e1 10e4 -180 10]) 
  
bode_freq_in_kHz_for_Hf =  1.24e4/(2*pi) % Get the numerator from the 
bode plot and enter to let matlab convert, have to change everytime 
% any values of initial variables are changed. 
  
%    Plotting roots of characteristic equation for different values of 
%    R 
Poiv = 0:.01:40; 
Poiv = Poiv'; 
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I = ones(length(Poiv),1); 
Lp = [Ls*Cf*I  (Rs*Cf-(Ls*Poiv)/Voo^2)  (1-(Rs*Poiv)/Voo^2)]; 
  
% %loop for the roots when varying the power, Poi/Pof and holding Cf 
and Ls constant 
L_roots = zeros(2,length(Lp)); %initialze place to store 
for a=1:length(Lp) % how many times to run loop, length of L 
    L_roots(:,a) = roots(Lp(a,:)); % Takes "a" row all columns of L and 
puts result in all rows of "a" column. 
end; 
  
figure(5) 
plot(real(L_roots(1,:)),imag(L_roots(1,:)),'r'); 
hold on; 
plot(real(L_roots(2,:)),imag(L_roots(2,:)),'b'); 
plot(real(L_roots(1,251)),imag(L_roots(1,251)),'kO'); 
plot(real(L_roots(1,788)),imag(L_roots(1,788)),'kd'); 
legend('1^s^t pole locus','2^n^d pole locus','Location at 
Poi','Location at Pof','Location','SouthEast'); 
plot(real(L_roots(2,251)),imag(L_roots(2,251)),'kO'); 
plot(real(L_roots(2,788)),imag(L_roots(2,788)),'kd'); 
plot(xx,yy,'k-'); 
hold off; 
% axis([-1000 1.5e4 -1.5e4 1.5e4]); 
title('Stability plot varying Load Resistance') 
xlabel('Real') 
ylabel('Imaginary') 
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